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LETTER TO THE EDITOR 

Monte Carlo renormalisation-group approach to 
percolation on a continuum: test of universality 

T Vicsek and J KertCszt 
Research Institute for Technical Physics of HAS, H-1325 Budapest, Ujpest 1, PO Box 76, 
Hungary 

Received 30 October 1980 

Abstract. It is shown that a Monte Carlo renormalisation-group technique can be employed 
for direct renormalisation of a system on a continuum, i.e. without restriction to a periodic 
lattice. For the problem of overlapping discs we find the critical area fraction s,= 
0.688 * 0.005 and the correlation-length critical exponent v = 1.33 i 0.07. The latter result 
indicates the regular-irregular lattice universality. 

1. Introduction 

Almost all discussions of percolation thresholds in real materials use results of cal- 
culations on regular lattices with randomly occupied sites or bonds. In this way the 
structural (topological) disorder of many materials characterised by randomly dis- 
tributed inhomogeneities in space is described by models possessing substitutional 
disorder. This simplification is of great computational convenience in many series 
expansion and Monte Carlo investigations. Furthermore, it makes natural the use of 
real-space renormalisation-group techniques, where a regular cell is transformed into a 
new one (for references see Essam (1980)). 

Since the critical properties of various lattices have been found to be independent of 
the lattice geometry (universality), it is usually supposed that the regular-irregular 
(random) lattice universality also holds. This basic assumption stands behind the 
extrapolation of results obtained by investigations of regular lattices to the case of 
percolation in random structures. 

On the other hand, evidence has begun to accumulate that some modifications of 
models on the regular lattices can result in new universality classes. In investigations of 
the orientated bond percolation (Blease 1977, Kertesz and Vicsek 1980) and the 
correlated site percolation (Kirkpatrick 1980) on two-dimensional lattices new, non- 
standard values we1 e found for the correlation-length exponent. 

In this Letter we will study the scaling behaviour of an irregular lattice consisting of 
discs of equal radii with randomly distributed centres on a plane (overlapping discs). 
This model has direct relevance to such physical problems as impurity conduction in 
lightly doped semiconductors, variable-range hopping in amorphous semiconductors or 
ferromagnetism in a dilute system of magnetic atoms in a non-magnetic host crystal with 
long-range interaction between the magnetic atoms, etc. The critical radius at which 
percolation occurs was firstly determined by the construction of clusters starting from a 
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central vertex (Roberts 1967). Pike and Seager (1974) calculated the same quantity by 
checking percolation between the two opposite edges of a cell having the shape of a 
square. Fremlin (1976) generated clusters of overlapping discs in order to find the 
critical density at which the infinite cluster appears. As far as we know, the only work 
dealing with some scaling properties of the random lattice is the paper of Kurkijarvi 
(1974) who investigated the conductivity of overlapping spheres in finite cubic cells. 
Later Shklovskii and Efros (1979) showed that Kurkijarvi’s results concerning the 
standard deviation of the critical radius values may be related to the problem of 
regular-irregular lattice universality. Webman et a1 (1977) studied the electrical 
conductivity critical exponent of the continuous percolation simulated by a correlated 
cubic network. 

There are several possibilities for studying scaling properties of a percolation model. 
The Monte Carlo (large-cell) real-space renormalisation-group method (MS RSRG) 
(Reynolds et a1 1978,1980) proved to be a very appropriate tool for the determination 
of the correlation-length critical exponent on various percolating lattices. In the 
following section it will be shown that the regularity of the cells to be renormalised is not 
an inherent condition for this type of transformation, and after some insignificant 
modifications the MS RSRG can be employed for our purposes. 

2. Renormalisation of the area fraction 

The irregular lattice to be considered in this Letter is made up of discs of equal radius ro. 
Their centres (the sites of the random lattice) are uniformly distributed on a plane with 
density p. Those sites whose discs intersect are considered as belonging to the same 
cluster. Since the value of ro = rc at which the infinite cluster appears depends on the 
density, it is more convenient to introduce the dimensionless variable 

s = 1 -exp(-.rrrip), 

where s is the so-called area fraction, playing the role of the occupation probability. In 
the following considerations p is regarded as being equal to unity. 

We expect that near the percolation threshold the characteristic quantities of the 
clusters scale with 1s - scl similarly to the case of the regular lattices. Namely, we can 
write 

5 - 1s - scI-y 

where s, is the critical area fraction, 5 denotes the correlation length and Y is the 
corresponding critical exponent. 

When applying the MC RSRG to our system, we firstly partition the irregular lattice 
into square-shaped cells of sides characterised by the quantity b = N*”, where N is the 
average number of sites falling into a cell. The actual number of sites in a cell Ni is 
distributed according to the Poisson distribution: PN, = NY eWN/Ni!. The cells of size b 
are renormalised into smaller ones of characteristic length b’ and the rescaling factor is 
obviously given by b/b’. The renormalisation group is defined by 

R’(s’, b’) = R(s, b )  (1) 

where s’ plays the role of the renormalised area fraction. Since s can be associated with 
the occupation probability and a large cell can be regarded as occupied if it contains a 
cluster spanning the cell, we define R(s, 6 )  as the probability of having a cluster 
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connecting the two opposite edges of a cell of size b if the area fraction is just equal to s. 
Therefore 

(2) 

where P k ( N )  is the probability of finding k discs in the cell for a given N and R[s(k), b ]  
denotes the probability of having a cluster which percolates between the opposite edges 
of a cell containing k discs. s ( k )  is the corresponding area fraction determined by the 
expression 

s (k)  = 1 - (1 - .rrri/N)k. 

In principle, it is possible for relatively small values of N to calculate R(s,  b )  from (2) 
approximately, using analytical calculations and numerical integration, because the 
terms with k >>N can be neglected and R[s(k), b ]  may be expressed as a multi- 
dimensional integral. The value of R [ s ( k ) ,  b ]  equals that part of the 2k-dimensional 
unit hypercube which corresponds to such configurations of the k sites that a percolat- 
ing path of overlapping discs is present in the cell. 

After R(s, b )  is determined, the fixed point s&,’ of the transformation equation (1) 
gives an approximation for the critical area fraction s, . The correlation-length critical 
exponent can be determined using MC RSRG in several ways. For a particular choice of b 
and b’ it can be obtained from (Reynolds et a1 1978) 

Vb,b’ h(b /b ’ ) /h  hb,b’ 

where 
dR(s, b )  dR’(s, b’) 
(T/ ds ) 1 s = s g . b  

is the eigenvalue of the linearised transformation equation (1). We obtain better 
approximations for U by extrapolating the ub,b’  values to the b + 00 limit. Following 
Reynolds et a1 (1978), we write 

Y = Yb,b’+ c/ln(b/b‘) ( 3 a )  

hl h b , b r = y  In(b/b‘)-c ( 3 b )  
where y = l / v  and c is constant. One can either extrapolate y to b/b’+ CD, where the 
RSRG should become exact, using (3a), or one can determine y from the slope of the 
In hb,b’ versus h ( b / b ’ )  plot (36). Levinshtein et a1 (1975) showed that when b goes to 
infinity the standard deviation c+,(b) belonging to the probability distribution function 
L(s, 6)  = dR(s, b)/ds scales with an exponent equal to v-’. Therefore v can also be 
obtained from the slope of the plot In[cr,(b)] versus In(b). 

or 

3. Calculation and results 

The small cells in our model are relatively ill defined because of the uncertainty in the 
choice of the boundary region to be considered when checking percolation from the 
upper to the lower edge of a cell. Therefore we consider cells containing N discs, where 
N >> 1 and R (s, b )  will be determined from Monte Carlo experiments. During one run 
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we first build up a random lattice within a cell of size b. Coordinates of the sites are 
generated by random numbers distributed uniformly on the interval [0, 11. The cell is 
divided into n X n subcells and after a site is generated it receives an index depending on 
the position of the subcell into which it fell. Another index labels sites inside one cell. In 
this way we can distinguish the sites belonging to subcells neighbouring a reference 
subcell. 

n is chosen in such a way that the critical diameter for the possible configurations is 
always less than the size of a subcell; therefore no discs can overlap belonging to other 
than nearest-neighbouring subcells. Now the mhltilabelling technique (Hoshen and 
Kopelman 1976) can be used for the cluster analysis on the random lattice: the 
connectivity properties have to be checked only for the sites belonging to the neigh- 
bouring subcells. Application of this algorithm results in a program being only six to 
eight times slower for this irregular lattice than for the regular ones and requiring 
computing time proportional to N. 

The program finds the least radius at which the given configuration percolates. In a 
series of experiments we thus obtain the density distribution function L(s, b )  of volume 
fractions at which spanning occurs. Integrating L(s, b ) ,  we recover R(s,  b )  and deter- 
mine s&,, from equation (1). The eigenvalue Ab,b,  can be obtained from 

A b , b ' = L ( s ,  b) /L ( s ,  ~ ' ) I S = S ; , ~ , *  
We generated q Monte Carlo realisations such that q x b2 3 5 x lo5. Cells of n = 4, 

6 ,8 ,11 ,16 ,22 ,32 ,64  were renormalised into a cell of n' = 3. (Hence b is in general not 
an integer since b = ( n  X n x a)*'*, where cy is the mean number of discs in one subcell. 
For various sizes 1 . 8 ~ a  ~ 2 . 4  was chosen depending on the size of the cell to be 
renormalised in a manner to minimise the number of sites within one cell, and at the 

n 
3 4 6 8 11 16 22 32 6 4  

2 0  3 0  4 0  I "  

In b 

Figure 1. Determination of the correlation-length exponent Y from the finite-size scaling 
theory. From the slope of the plots In[ffs(b)]-' (0) and h [ U ~ ( b ) ] - '  (0) against ln(b) we 
obtain v s =  1.34h0.06 and v R =  1.31 h0.07 respectively. For the definitions of ~ ~ ( b ) ,  
a ~ ( b ) ,  n and b see the text. The typical uncertainties are represented for two pairs of 
experiments. 
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same time to avoid overlaps of discs of critical radius belonging to the next-nearest- 
neighbouring subcells.) In figure 1 we display the In b dependence of ln[c~,(b)-’] and 
h[aR(b)-’], where a,(b) is the standard deviation of the critical area fractions in the 
various runs and aR(b)  is the same quantity for the normalised critical radius R,= 
2 r , ( ~ p ) l / ~ .  c+,(b) and aR(b)  should scale as b-”’, and therefore from the inverse slope 
of these finite-size scaling plots we find Y, = 1.34h0.06 and vR = 1.31 ztO.07. Next we 
plot (figure 2) In Ab,b, against ln(b/b’) (3b). The inverse slope is Y = 1.35 * 0.07. We 

that a parabola fit in such a plot takes the results for small cells better into account than a 
straight line (Reynolds et ai 1980). In this manner we obtain y = 0,76* 0.04, which 
corresponds to Y = 1.31610.07. 

The sequence s&’ is extrapolated on the basis of finite-size scaling considerations 
(Fisher 1971, Sur et ul 1976). In figure 3 we plotted s;j:b‘ against b-l’” with trial value 
I/ = 1.33 (b’ is in all cases equal to the value of b corresponding to the cell of n = 3). We 
find sc = 0.688* 0.005, which is somewhat larger than the value 0.68 predicted by the 
Monte Carlo experiments of Pike and Seager (1974) and the value 0.67 calculated by 

have also plotted y b , b ’ =  In A b , b , / h ( b / b ‘ )  against l / h ( b / b f ) .  Eschbach et ui (1980) found 

n 

In I blb’l 

Figure 2. Dependence on In(b/b’) of In hb,b’ where b’ characterises the size of the cell into 
which the larger cells are renormalised. The slope is v = 1.35 *0.07. n characterises the 
size of the cell renormalised into a smaller cell of n’ = 3. 

00 0 4  0.8 1 2  
llln ( b l b ’ )  

Figure 3. Extrapolation of Yb,& =In A b , b , / h ( b / b ’ ) .  By fitting a parabola to our data we find 
y = 0.76 * 0.04, i.e. v = 1.316 * 0.07. 
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Figure 4. Sequence of fixed points sz,,, is plotted against (b/b’)-’. The straight line 
extrapolates to the value P, = 0.688 0.005. 

Fremlin (1976). In an earlier work of Roberts (1967) the value 0.62 was obtained, 
while Domb (1972), from the study of percolation on regular lattices with long-range 
interaction, gave an estimation sc- 0.675. 

4. Conclusions 

We have demonstrated that a real-space renormalisation-group technique originally 
developed for regular lattices can be used for the investigation of scaling properties of 
the random lattices. 

Since the study of regular lattices is motivated by the assumption of the regular- 
irregular lattice universality, we decided to test this hypothesis. Besides, the system of 
overlapping discs can be modelled on a regular lattice with long-range interaction 
(Domb 1972), where sites are connected if they are nearer than 1, where 1 is much 
greater than the lattice constant; therefore at the same time we check universality for 
this particular regular system too. For the latter system Stauffer and Coniglio (1980) 
argue that it should have the same critical exponents as the system with nearest- 
neighbour interaction. Hoshen et a1 (1978) also could not find any remarkable change 
in the exponent p and y as the interaction range was increased up to 1 = 7. 

For the correlation-length critical exponent of the system of overlapping discs, 
averaging v’s calculated by various ways, we obtained v = 1.33 * 0.07. This value is 
consistent with the literature estimates for site percolation on triangular and square 
lattices: v = 1.32:::;; (Cox and Essam 1976), v = 1.354*0.015 (Reynolds eta1 1978), 
v =t(denNijs  1979), v = 1.33*0.01 (Eschbachetall980) and v = 1.33410.002 (MP 
Nightingale and H W J Blote 1980, talk presented at STATPHYS 14, Edmonton, 
Canada). Hence we conclude that there is no evidence to suggest that the random 
lattice problem would be in a different universality class from the regular one. 

Finally, we remark that a model from overlapping discs of various radii has some 
relation to the correlated percolation model on a two-dimensional regular lattice with 
strong attractive interaction, because in this case one expects circle-shaped clusters to 
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grow. Since Kirkpatrick (1980) obtained for a correlated-site percolation model 
non-universal connectivity properties, the investigation of scaling properties of the 
system of variable-size discs could also be of interest. 

We are aware that the Boston group (Stanley 1980, private communication) is 
carrying out a finite-size scaling study of the same system. 
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Note added in proof. After acceptance of this paper we learned of closely related work by Haan and Zwanzig 
(1977) studying the continuum percolation problem by series expansions. Their result concerning the mean 
cluster size exponent also indicates the lattice-off -lattice universality. 
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